
Network Computing and Efficient Algorithms
Wireless Protocals

Xiang-Yang Li and Xiaohua Xu

School of Computer Science and Technology
University of Science and Technology of China (USTC)

September 1, 2021

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 1 / 18

Wireless Networks

Wireless Networks Models
Geometric graph models

unit disk graph.
Restricted network graph

the total number of neighbors of
a node which are not adjacent is
small.

Biggest Advantage (no wires)
Fast installation
Cheaper

Biggest Disadvantage (no wires)
Attenuation
Interference
Energy supply

Assumptions: Clique; Synchronous.
Question: To send or not to send?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 18

Wireless Networks

Wireless Networks Models
Geometric graph models

unit disk graph.
Restricted network graph

the total number of neighbors of
a node which are not adjacent is
small.

Biggest Advantage (no wires)
Fast installation
Cheaper

Biggest Disadvantage (no wires)
Attenuation
Interference
Energy supply

Assumptions: Clique; Synchronous.
Question: To send or not to send?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 2 / 18

Leader Election

ALGORITHM 12.1 SLOTTED ALOHA() ;
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 12.2.
Using Algorithm 12.1 allows one node to transmit alone (become a leader)
after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

Pr[X = 1] = n · 1
n
· (1− 1

n
)n−1 ≈ 1

e
,

where the last approximation is a result from Theorem 12.29 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

(Theorem 12.29: limn→∞(1+ t
n)

n = et)

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 3 / 18

Leader Election

ALGORITHM 12.1 SLOTTED ALOHA() ;
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 12.2.
Using Algorithm 12.1 allows one node to transmit alone (become a leader)
after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

Pr[X = 1] = n · 1
n
· (1− 1

n
)n−1 ≈ 1

e
,

where the last approximation is a result from Theorem 12.29 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

(Theorem 12.29: limn→∞(1+ t
n)

n = et)

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 3 / 18

Leader Election

ALGORITHM 12.1 SLOTTED ALOHA() ;
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 12.2.
Using Algorithm 12.1 allows one node to transmit alone (become a leader)
after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

Pr[X = 1] = n · 1
n
· (1− 1

n
)n−1 ≈ 1

e
,

where the last approximation is a result from Theorem 12.29 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.

(Theorem 12.29: limn→∞(1+ t
n)

n = et)

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 3 / 18

Leader Election

But then, How can the leader know its role?
The nodes start sending the ID of the leader
with 1/n

But how can the node that sent the leader
ID know the leader knows?
The leader sends an acknowledgement to this
node

⇒ Distributed
ACK

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 4 / 18

Leader Election

But then, How can the leader know its role?
The nodes start sending the ID of the leader
with 1/n

But how can the node that sent the leader
ID know the leader knows?
The leader sends an acknowledgement to this
node

⇒ Distributed
ACK

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 4 / 18

Initialization

Initialization
Sometimes we want the n nodes to have the IDs 1, 2, ... , n. This
process is called initialization.
Initialization can for instance be used to allow the nodes to transmit
one by one without any interference.

Theorem 12.3.
If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 12.1. The leader
gets the nest free number and afterwards leaves the process. We know that
this works with probability 1/e. The expected time to finish is hence e ·n.

For a more realistic scenario, we need a uniform algorithm.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 18

Initialization

Initialization
Sometimes we want the n nodes to have the IDs 1, 2, ... , n. This
process is called initialization.
Initialization can for instance be used to allow the nodes to transmit
one by one without any interference.

Theorem 12.3.
If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 12.1. The leader
gets the nest free number and afterwards leaves the process. We know that
this works with probability 1/e. The expected time to finish is hence e ·n.

For a more realistic scenario, we need a uniform algorithm.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 18

Initialization

Initialization
Sometimes we want the n nodes to have the IDs 1, 2, ... , n. This
process is called initialization.
Initialization can for instance be used to allow the nodes to transmit
one by one without any interference.

Theorem 12.3.
If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 12.1. The leader
gets the nest free number and afterwards leaves the process. We know that
this works with probability 1/e. The expected time to finish is hence e ·n.

For a more realistic scenario, we need a uniform algorithm.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 18

Initialization

Initialization
Sometimes we want the n nodes to have the IDs 1, 2, ... , n. This
process is called initialization.
Initialization can for instance be used to allow the nodes to transmit
one by one without any interference.

Theorem 12.3.
If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 12.1. The leader
gets the nest free number and afterwards leaves the process. We know that
this works with probability 1/e. The expected time to finish is hence e ·n.

For a more realistic scenario, we need a uniform algorithm.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 5 / 18

Uniform Initialization with CD

Definition 10.4 (Collision Detection, CD).
Two or more nodes transmitting concurrently is called interference. In a
system with collision detection, a receiver can distinguish interference
from nobody transmitting. In a system without collision detection. a
receiver cannot distinguish the two caese.

The main idea of the algorithm is to partition nodes iteratively into sets.
Each set is identified by a label (a bitstring), and by storing one such
bitstring, each node knows in which set it currently is. Initially, all nodes are
in a single set, identified by the empty bitstring. This set is then partitioned
into two non-empty sets, identified by ’0’ and ’1’. In the same way, all sets
are iteratively partitioned into two non-empty sets, as long as a set contains
more than one node. If a set contains only a single node, this node receives
the nest free ID. The algorithm terminates once every node is alone in its set.
Note that this partitioning process iteratively creates a binary tree
which has exactly one node in the set at each leaf, and has n leaves.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 18

Uniform Initialization with CD

Definition 10.4 (Collision Detection, CD).
Two or more nodes transmitting concurrently is called interference. In a
system with collision detection, a receiver can distinguish interference
from nobody transmitting. In a system without collision detection. a
receiver cannot distinguish the two caese.

The main idea of the algorithm is to partition nodes iteratively into sets.
Each set is identified by a label (a bitstring), and by storing one such
bitstring, each node knows in which set it currently is. Initially, all nodes are
in a single set, identified by the empty bitstring. This set is then partitioned
into two non-empty sets, identified by ’0’ and ’1’. In the same way, all sets
are iteratively partitioned into two non-empty sets, as long as a set contains
more than one node. If a set contains only a single node, this node receives
the nest free ID. The algorithm terminates once every node is alone in its set.
Note that this partitioning process iteratively creates a binary tree
which has exactly one node in the set at each leaf, and has n leaves.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 6 / 18

Initialization with Collision Detection

ALGORITHM 12.5 INITIALIZATION WITH COLLISION DETECTION ()
Every ndoe v executes the following code:
nestId← 0
myBitstring← ” ” . Initialize to empty string
bitstringToSplit← [” ”] . a queue with sets to split
while bitstringToSplit is not empty do

b← bitstringToSplit.pop()
repeat

if b = myBitString then
choose r uniformly at random from {0,1}
in the next two time slots:
transmit in slot r, and listen in other slot

else
it is not my bitsrting, just listen in both slots

until there was at least 1 transmission in both slots
if b = myBitstring then

myBitstring← myBitsrting+ r . append bit r
for r ∈ {0,1} do

if some node u transmitted alone in slot r then
node u becomes ID nextId and becomes passive
nextId← nextId+1

else
bitstringToSplit.push(b+ r)

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 7 / 18

Uniform Initialization with CD

THeorem 12.6
Algorithm 12.5 correctly initializes n nodes in expected time O(n)

Proof. A successful split is defined as a split in which both subsets are
non-empty. We know that there are exactly n−1 successful splits because
we have a binary tree with n leaves and n−1 inner nodes. Let us now
calculate the probability for creating two non-empry sets from a set of size
k ≥ 2 as

Pr[1≤ X ≤ k−1] = 1−Pr[X = 0]−Pr[X = k] = 1− 1
2k −

1
2k ≥

1
2
.

Thus, in expectation we need O(n) splits.

What if we do not have collision detection?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 18

Uniform Initialization with CD

THeorem 12.6
Algorithm 12.5 correctly initializes n nodes in expected time O(n)

Proof. A successful split is defined as a split in which both subsets are
non-empty. We know that there are exactly n−1 successful splits because
we have a binary tree with n leaves and n−1 inner nodes. Let us now
calculate the probability for creating two non-empry sets from a set of size
k ≥ 2 as

Pr[1≤ X ≤ k−1] = 1−Pr[X = 0]−Pr[X = k] = 1− 1
2k −

1
2k ≥

1
2
.

Thus, in expectation we need O(n) splits.

What if we do not have collision detection?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 18

Uniform Initialization with CD

THeorem 12.6
Algorithm 12.5 correctly initializes n nodes in expected time O(n)

Proof. A successful split is defined as a split in which both subsets are
non-empty. We know that there are exactly n−1 successful splits because
we have a binary tree with n leaves and n−1 inner nodes. Let us now
calculate the probability for creating two non-empry sets from a set of size
k ≥ 2 as

Pr[1≤ X ≤ k−1] = 1−Pr[X = 0]−Pr[X = k] = 1− 1
2k −

1
2k ≥

1
2
.

Thus, in expectation we need O(n) splits.

What if we do not have collision detection?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 8 / 18

Uniform Initialization with CD

Let us assume that we have a special node l (leader) and let S denote the set
of nodes which want to transmit. We now split every time slot from
Algorithm 12.5 into two time slots and use the leader to help us distinguish
between silence and noise. In the first slot every node from the set S
transmits, in the second slot the nodes in S∪{l} transmit. This gives the
nodes sufficient information to distinguish the different cases(see Table
below).

nodes in S transmit nodes in S∪{l} transmit
|S|= 0 × X

|S|= 1,S = {l} X X
|S|= 1,S 6= {l} X ×
|S| ≥ 2 × ×

Table: Using a leader to distinguish between noise and silence:× represents
noise/silence, X represents a successful transmission.

A leader immediately brings CD to any protocol

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 18

Uniform Initialization with CD

Let us assume that we have a special node l (leader) and let S denote the set
of nodes which want to transmit. We now split every time slot from
Algorithm 12.5 into two time slots and use the leader to help us distinguish
between silence and noise. In the first slot every node from the set S
transmits, in the second slot the nodes in S∪{l} transmit. This gives the
nodes sufficient information to distinguish the different cases(see Table
below).

nodes in S transmit nodes in S∪{l} transmit
|S|= 0 × X

|S|= 1,S = {l} X X
|S|= 1,S 6= {l} X ×
|S| ≥ 2 × ×

Table: Using a leader to distinguish between noise and silence:× represents
noise/silence, X represents a successful transmission.

A leader immediately brings CD to any protocol

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 9 / 18

Leader Election

Definition 12.8 (With High Probability).
Some probabilistic event is said to occur with high probability (w.h.p.), if it
happens with a probability p≥ 1−1/nc, where c is a constant. The constant
c mat be chosen arbitrarily, but it is considered constant with respect to
Big-O notation.

Theorem 12.9
Algorithm 12.1 elects a leader w.h.p. in O(logn) time slots.

Proof. The probability for not electing a leader after c · logn time slots, i.e.,
c logn slots without a successful transmission is

(1− 1
e
)c lnn = (1− 1

e
)e·c′ lnn ≤ 1

elnn·c′ =
1

nc′ .

What about uniform algorithms?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 18

Leader Election

Definition 12.8 (With High Probability).
Some probabilistic event is said to occur with high probability (w.h.p.), if it
happens with a probability p≥ 1−1/nc, where c is a constant. The constant
c mat be chosen arbitrarily, but it is considered constant with respect to
Big-O notation.

Theorem 12.9
Algorithm 12.1 elects a leader w.h.p. in O(logn) time slots.

Proof. The probability for not electing a leader after c · logn time slots, i.e.,
c logn slots without a successful transmission is

(1− 1
e
)c lnn = (1− 1

e
)e·c′ lnn ≤ 1

elnn·c′ =
1

nc′ .

What about uniform algorithms?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 18

Leader Election

Definition 12.8 (With High Probability).
Some probabilistic event is said to occur with high probability (w.h.p.), if it
happens with a probability p≥ 1−1/nc, where c is a constant. The constant
c mat be chosen arbitrarily, but it is considered constant with respect to
Big-O notation.

Theorem 12.9
Algorithm 12.1 elects a leader w.h.p. in O(logn) time slots.

Proof. The probability for not electing a leader after c · logn time slots, i.e.,
c logn slots without a successful transmission is

(1− 1
e
)c lnn = (1− 1

e
)e·c′ lnn ≤ 1

elnn·c′ =
1

nc′ .

What about uniform algorithms?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 18

Leader Election

Definition 12.8 (With High Probability).
Some probabilistic event is said to occur with high probability (w.h.p.), if it
happens with a probability p≥ 1−1/nc, where c is a constant. The constant
c mat be chosen arbitrarily, but it is considered constant with respect to
Big-O notation.

Theorem 12.9
Algorithm 12.1 elects a leader w.h.p. in O(logn) time slots.

Proof. The probability for not electing a leader after c · logn time slots, i.e.,
c logn slots without a successful transmission is

(1− 1
e
)c lnn = (1− 1

e
)e·c′ lnn ≤ 1

elnn·c′ =
1

nc′ .

What about uniform algorithms?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 10 / 18

Uniform Leader Election

ALGORITHM 12.10 UNIFORM LEADER ELECTION()
1: Every node v executes the following code:
2: for k← 1,2,3, . . . do
3: for i← 1 to c · k do
4: transmit with probability p← 1/2k

5: if node v was the only node which transmitted then
6: v becomes the leader
7: break

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 11 / 18

Uniform Leader Election

Theorem 12.11
By using Algorithm 12.10 it is possible to elect a leader w.h.p. in O(log2 n)
time slots if n is not known.

Round 1.
Each node transmit at probability 1/2 for c times.

Estimate n is 2.... ...

...
...

. . .

. . .

. . .
Round k.
each node transmit at probability 1/2 for c times

Estimate n is 2k.

... ...
Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 12 / 18

Uniform Leader Election

Theorem 12.11
By using Algorithm 12.10 it is possible to elect a leader w.h.p. in O(log2 n)
time slots if n is not known.

Proof. Let us briefly describe the algorithm. The nodes transmit with
probability p = 2−k for ck time slots for k = 1,2, At first p will be too
high and hence there will be a lot of interference. But after logn phases, we
have k ≈ logn and thus the nodes transmit with probability ≈ 1

n . For
simplicity’s sake, let us assume that n is a power of 2. Using the approach
outlined above, we konw that after logn iterations, we have p = 1

n . Theorem
12.9 yields that we can elect a leader w.h.p. in O(logn) slots. Since we have
to try logn estimates until k ≈ n, the total runtime is O(log2 n).

Algorithm 12.10 has not used collision detection. Can we solve leader
election faster in a uniform setting with collision detection?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 13 / 18

Uniform Leader Election

Theorem 12.11
By using Algorithm 12.10 it is possible to elect a leader w.h.p. in O(log2 n)
time slots if n is not known.

Proof. Let us briefly describe the algorithm. The nodes transmit with
probability p = 2−k for ck time slots for k = 1,2, At first p will be too
high and hence there will be a lot of interference. But after logn phases, we
have k ≈ logn and thus the nodes transmit with probability ≈ 1

n . For
simplicity’s sake, let us assume that n is a power of 2. Using the approach
outlined above, we konw that after logn iterations, we have p = 1

n . Theorem
12.9 yields that we can elect a leader w.h.p. in O(logn) slots. Since we have
to try logn estimates until k ≈ n, the total runtime is O(log2 n).

Algorithm 12.10 has not used collision detection. Can we solve leader
election faster in a uniform setting with collision detection?

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 13 / 18

Fast Leader Election with CD

ALGORITHM 12.12 UNIFORM LEADER ELECTION WITH CD()
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1

2
4: if at least one node transmitted then
5: all nodes that did not transmit quit the protocal
6: until one node transmits alone

Theorem 12.13
With collision detection we can elect a leader using Algorithm 12.12 w.h.p.
in O(logn) time slots.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 14 / 18

Fast Leader Election with CD

ALGORITHM 12.12 UNIFORM LEADER ELECTION WITH CD()
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1

2
4: if at least one node transmitted then
5: all nodes that did not transmit quit the protocal
6: until one node transmits alone

Theorem 12.13
With collision detection we can elect a leader using Algorithm 12.12 w.h.p.
in O(logn) time slots.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 14 / 18

Proof of Theorem 12.13

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yeilds the correctness. A slot is called successful if at
most half the active nodes transmit. We can assume that k ≥ 2 since
otherwise we would have already elected a leader. We can calculate the
probability that a time silt is successful as

Pr[1≤ X ≤ d k
2
e] = P[X ≤ d k

2
e]−Pr[X = 0]≥ 1

2
− 1

2k ≥
1
4
.

Since the number of active nodes at least halves in every successful time
slot, logn successful time slots are sufficient to elect a leader. Now let Y be a
random variable which counts the number of successful time slots after
8 ·c · logn time solts. The expected value is E[Y]≥ 8 ·c · logn · 1

4 ≥ 2 ·c · logn.
Since all those time slots are independent form each other, we can apply a
Chernoff bound (see Theorem 12.27) with δ = 1

2 which states

Pr[Y < (1−δ)E[Y]]≤ e−
δ2
2 E[Y] ≤ e−

1
8 ·2c logn ≤ n−α

for any constant α

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 15 / 18

Even Faster Leader Election with CD

ALGORITHM 12.14 EVEN FASTER LEADER ELECTION WITH CD()
i← 1
repeat

i← 2 · i
transmit with probability 1/2i

until no node transmitted . End of Phase 1
l← 2i/2, u← 2i

while l+1 < u do
j← d l+u

2 e
transmit with probability 1/2j

if no node transmitted then
u← j

else
l← j . End of Phase 2

k← u
repeat

transmit with probability 1/2k

if no node transmitted then
k← k−1

else
k← k+1

until exactly one node transmitted

Theorem 12.23.
The Algorithm 12.14 elects a leader
with probability of at least
1− log logn

logn in time O(log logn).

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 16 / 18

Even Faster Leader Election with CD

ALGORITHM 12.14 EVEN FASTER LEADER ELECTION WITH CD()
i← 1
repeat

i← 2 · i
transmit with probability 1/2i

until no node transmitted . End of Phase 1
l← 2i/2, u← 2i

while l+1 < u do
j← d l+u

2 e
transmit with probability 1/2j

if no node transmitted then
u← j

else
l← j . End of Phase 2

k← u
repeat

transmit with probability 1/2k

if no node transmitted then
k← k−1

else
k← k+1

until exactly one node transmitted

Theorem 12.23.
The Algorithm 12.14 elects a leader
with probability of at least
1− log logn

logn in time O(log logn).

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 16 / 18

Lower Bound

Theorem 12.24.

Any uniform protocal that elects a leader with probability of at least 1− 1
2t

must run for at least t time slots.

Proof. Consider a system with only 2 nodes. The probability that exactly one
transmits is at most

Pr[X = 1] = 2p · (1−p)≤ 1
2
.

Thus, after t time slots the probability that a leader was elected is at most
1− 1

2t .

Setting t = log logn shows that Algorithm 12.14 is almost tight.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 17 / 18

Lower Bound

Theorem 12.24.

Any uniform protocal that elects a leader with probability of at least 1− 1
2t

must run for at least t time slots.

Proof. Consider a system with only 2 nodes. The probability that exactly one
transmits is at most

Pr[X = 1] = 2p · (1−p)≤ 1
2
.

Thus, after t time slots the probability that a leader was elected is at most
1− 1

2t .

Setting t = log logn shows that Algorithm 12.14 is almost tight.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 17 / 18

Lower Bound

Theorem 12.24.

Any uniform protocal that elects a leader with probability of at least 1− 1
2t

must run for at least t time slots.

Proof. Consider a system with only 2 nodes. The probability that exactly one
transmits is at most

Pr[X = 1] = 2p · (1−p)≤ 1
2
.

Thus, after t time slots the probability that a leader was elected is at most
1− 1

2t .

Setting t = log logn shows that Algorithm 12.14 is almost tight.

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 17 / 18

Uniform Asynchronous Wakeup without CD

Theorem 12.25
If nodes wake up in an arbitrary (worst-case) way, any algorithm may take
Ω(n/ logn) time slots until a single node can successfuylly transmit

Uniform⇒ all nodes executed the same code
At some point the nodes must transmit.

First transmission at time t, with probability p independent of n
Adversary wakes up w = c

p lnn nodes in each slot

Pr[E1] = P[X = 1 at time t]< 1
nc−1 = 1

nc′ .

P[X 6= 1 at time t and the following n/w time slots]
= (1−Pr(E1))

n/w > (1− 1
nc′)

Θ(n/ logn) > 1− 1
nc′′ .

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 18 / 18

Uniform Asynchronous Wakeup without CD

Theorem 12.25
If nodes wake up in an arbitrary (worst-case) way, any algorithm may take
Ω(n/ logn) time slots until a single node can successfuylly transmit

Uniform⇒ all nodes executed the same code
At some point the nodes must transmit.

First transmission at time t, with probability p independent of n
Adversary wakes up w = c

p lnn nodes in each slot

Pr[E1] = P[X = 1 at time t]< 1
nc−1 = 1

nc′ .

P[X 6= 1 at time t and the following n/w time slots]
= (1−Pr(E1))

n/w > (1− 1
nc′)

Θ(n/ logn) > 1− 1
nc′′ .

Xiang-Yang Li and Xiaohua Xu Network Computing and Efficient Algorithms 18 / 18

